


2. Since the location of the center is on a point with integer coordinates, we may as well consider 
the center to be at (0, 0) for our purposes. 
 
Note that (3, 0) is not counted, as it is on the circle itself.  The point (2, 2), however, is in the 
interior (the distance from the origin is  2 2 ! 2.828 < 3).  Consequently, the set of points in 
the interior is exactly the points each of whose coordinates are less than 3 units from the 
center in absolute value.  With 5 choices for the first coordinate and 5 choices for the second 
coordinate, we get 25 such points. 

3. Because   (10A+ B)− (10B + A) = 9 A− B = k 2 ,  it follows that  A− B  is a perfect square: 
 

  A− B = 0  yields 10 pairs of integers: (A, B) = (0, 0), (1, 1), …, (9, 9). 

  A− B = 1 yields 18 pairs: the nine (A, B) = (0, 1), (1, 2), …, (8, 9) and their reverses. 

  A− B = 4  yields 12 pairs: the six (A, B) = (0, 4), (1, 5), …, (5, 9) and their reverses. 

  A− B = 9  yields 2 pairs: (A, B) = (0, 9) and its reverse (9, 0). 

The total number of ordered pairs (A, B) is   10+18+12+ 2 = 42.  

Problem set #3 

1. The perimeter of the large semicircle is 
  
PL =

1
2

(πd) = 1
2

(π ⋅4) = 2π .   The perimeter of each 

of the small semicircles is 
  
PS =

1
2

(π ⋅1) = 1
2
π .   Add four of these to the large semicircle 

perimeter to get    P = PL + 4PS = 4π .  

2. Do the distribution in each equation to get x2 + xy = 9 and y2 + xy = 16.  Add them together to 

get   x
2 + 2xy + y2 = 25 → (x + y)2 = 25 → x + y = ±5.  So 

  
x(±5) = 9, or x = ±

9
5

.   Likewise, 

  
y(±5) = 16, or y = ±

16
5

.   Of these combinations of answers, only 
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satisfy both equations. 

3. We need to subtract out the even denominators from the given expression. We start out with 

  
1+ 1

22 +
1
32 +

1
42 +

1
52 +

1
62 +!= π 2

6
.   Note that 

  

1
22 +

1
42 +

1
62 +!= 1

4
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1
32 +!
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= π 2

24
.  

Therefore, subtract the two expressions from each other: 
    
1+ 1

32 +
1
52 +!= π 2

6
− π 2

24
= π 2

8
.  

 



Problem set #4 

1. Take logarithms (common or natural, it doesn’t matter which) of each number and compare: 
 

  

log a = 100log2 ≈ 301.03
logb = 600log3≈ 286.27
logc = 300log10 = 300

 

 
From this, it is easy to see that  b < c < a.  

2. Any three non-collinear points in a plane will determine a circle.  We need to choose the 

points in groups of 3 and make sure they are non-collinear.  There are 
  
C(9,3) = 9!

6!3!
= 84  

ways to choose any three of these points at a time.  Note that 8 of them are collinear, leaving 
76 combinations of 3 points.  Another thing to note is that there are 14 circles that can 
contain 4 of these points simultaneously (the circles are centered at (0.5, 0.5), (1.5, 0.5),   
(0.5, 1.5), (1.5, 1,5), (1, 1), (0.5, 1), (1.5, 1), (1, 0.5), and (1, 1.5), and they can have radii of 

 
2

2 ,1, 5
2 , 2, or 10

2 ),  so these 14 combinations have been quadruple-counted.  Take the extra 

42 combinations out, and you are left with a total of  34 different circles. 

3. Because 
  
1
2

a, 1
2

b, 1
2

c, 1
2

d , and 1
2

e∈[-1 ,1], there are real numbers v, w, x, y, and z such that 

  a = 2cosv, b = 2cos w, c = 2cos x, d = 2cos y, and e = 2cos z.   We can use the trigonometric 
identity  2cos5α = (2cosα )5 −5(2cosα )3 +5(2cosα )  so we can write   2cos5v = a5 −5a3 +5a.   
We similarly convert equations using w, x, y, and z into equations using b, c, d, and e.  
Adding these five equations together gives us   2cos5v∑ = a5∑ −5 a3∑ +5 a∑ = 10,  which 

simplifies to   cos5v∑ = 5.   Therefore, it is easy to separate this into 5 equations showing that 

  cos5v = cos5w = cos5x = cos5y = cos5z = 1,  which means that v, w, x, y, and z = (72k)˚,        

0 ≤ k ≤ 4, and changing back to the original variables, 
  
a, b, c, d , e∈ 2, 5 −1

2
,− 5 +1

2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.   To 

satisfy the condition from the problem stating that   a + b+ c + d + e = 0,  we make 

  
a = b = − 5 +1

2
, c = d = 5 −1

2
, and e = 2.  

Team Problem set 

1. Let   y = x +1  and   z = x + 2.   The inequality then turns into 
  

1
x
+ 1

x +1
+ 1

x + 2
> 1

2015
,  which 

can be changed into 
  

3
x
> 1

2015
,  because 

  

1
x
> 1

x +1
and 1

x
> 1

x + 2
.   Therefore, x < 6045.  To 



maximize x + y + z = 3x + 3, we maximize x.  Let x = 6044.  Then the inequality evaluates to 

 

1
6044

+ 1
6045

+ 1
6046

= 1
6045

+ 2 ⋅6045
60452 −1

> 1
6045

+ 2 ⋅6045
60452 = 1

2015
,  which is true, so x = 6044 

works.  Therefore, the maximum value of x + y + z is   3(6044)+ 3= 18,135.  
 

2. Take a look at a triangle formed from the 
lower left corner to the midpoint of the bottom 
side of the equilateral triangle to the center of 
the bottom circle.  The small angle from the 
corner of the equilateral triangle is 15˚.  To 
find the radius of the circle, we set up this trig 
equation: 
 
 

   
tan15! = r

.5
→ r = .5tan15! → r = .5(2− 3) = 2− 3

2
.  

Use this radius to find the area of the circle: 
   
A = π 2− 3

2
⎛

⎝
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⎠
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2

= 7− 4 3
4

π  

3. Let  an  be the nth term of the sequence.  Then we can write the sum of the sequence as this: 
 

   Sn = a1 + a2 + a3 +!an = n2 +5n  
 
For any n, 

  
an = Sn − Sn−1 = n2 +5n⎡⎣ ⎤⎦ − (n−1)2 +5(n−1)⎡⎣ ⎤⎦ = 2n+ 4.

 
This says that the nth term 

in the sequence can be found by subtracting the sum of the first n terms minus the sum of the 
first n – 1 terms, with the nth term left behind.  Therefore, the 2015th term of this sequence is 

   a2015 = 2 ⋅2015+ 4 = 4034.   This particular sequence of numbers happens to be 6, 8, 10, 12, 
and so on.  You can easily verify that n2 + 5n describes the sum of the first n terms of the 
sequence. 

4. Fix one member, M.  If one of the other 8 members is on a committee with M, then this is the 
only committee shared with M, by the hypothesis.  Therefore, the remaining 8 members who 
are on committees with M are in disjoint 2-element subsets.  There are at most 4 such 
subsets, so M can be on at most 4 committees.  This yields an upper bound of 9× 4 
committee memberships.  Divide by 3, the number of members of each committee, to obtain 
12, the upper bound for the number of committees.  It is possible to obtain 12: put the 9 
members into a 3× 3 array: 

     

 

A B C
D E F
G H I

 

 

.5 
15˚ 

r 



Each row, each column, and each wraparound diagonal gives a committee.  For example, 
ADG, BDI, and BFG are three such committees.  This yields

 
12 committees satisfying the 

hypotheses. 

5. The girls took 10 apples, so the boys took the remaining 22 apples.  If we let x, y, z, and w 
represent the number of apples that each of the girls took, we can write this equation: 
  1x + 2y + 3z + 4w = 22.   Let’s rearrange this equation as   x + 3z = 22− (2y + 4w).   This helps 
us, because we know that both x and z have to be odd or they both have to be even, since the 
right side of the equation is even.  Since   x + y + z + w = 10,  we need to test the cases where   
x and z are 1 and 3 and y and w are 2 and 4, and vice versa, and see where we can get both 
expressions equal to each other: 
 

  x + 3z       22− (2y + 4w)  

 

(1)+ 3(3) = 10
(3)+ 3(1) = 6
(2)+ 3(4) = 14
(4)+ 3(2) = 10

   

 

22− 2(1)+ 4(3)⎡⎣ ⎤⎦ = 8

22− 2(3)+ 4(1)⎡⎣ ⎤⎦ = 12

22− 2(2)+ 4(4)⎡⎣ ⎤⎦ = 2

22− 2(4)+ 4(2)⎡⎣ ⎤⎦ = 6

 

 
The only combination of these variables that works is when x = 3, y = 4, z = 1, and w = 2.  
We can now match boys’ names with girls’ names.  Therefore, the full names of the girls are 

 
Mary Jones, Deb Robins, Wendy Smith, and Jennifer Brown.  

6. Since  2015= 5⋅13⋅31,  we can eliminate numbers that are multiples of 5, 13, and 31.  There 
are 402 multiples of 5 less than 2015.  There are 154 multiples of 13 less than 2015.  There 
are 64 multiples of 31 less than 2015.  However, we would repeat 30 values that are 
multiples of both 5 and 13, 12 values that are multiples of both 5 and 31, and 4 values that 
are multiples of both 13 and 31.  This gives us 402 + 154 + 64 – 30 – 12 – 4 = 574 values 
less than 2015 that have a common factor with 2015 that is greater than 1, for a total of 

  2014−574 = 1440  numbers relatively prime to 2015. 
 
Note: The number of positive integers less than and relatively prime to a positive integer n 

can also be found with the Euler function, 
   
φ(n) = n 1− 1

p1
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⎞
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,  where the 

prime factorization of the integer n is written as    n = p1
k1 p2

k2! pm
km ,  and for n = 2015 gives 

us 
 
φ(2015) = 2015 4

5
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13
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30
31

⎛
⎝⎜

⎞
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= 1440.   Also interesting to note is that only the individual 

prime factors of n matter, and not how many times they appear as a factor.




